Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Clin Infect Dis ; 78(Suppl 1): S55-S63, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294117

RESUMO

BACKGROUND: Neuroinvasive infection with Francisella tularensis, the causative agent of tularemia, is rare. Establishing clinical suspicion is challenging if risk factors or clinical features classically associated with tularemia are absent. Tularemia is treatable with antibiotics; however, there are limited data to inform management of potentially fatal neuroinvasive infection. METHODS: We collected epidemiologic and clinical data on 2 recent US cases of neuroinvasive F. tularensis infection, and performed a literature review of cases of neuroinvasive F. tularensis infection published after 1950. RESULTS: One patient presented with focal neurologic deficits and brain lesions; broad-range molecular testing on resected brain tissue detected F. tularensis. The other patient presented with meningeal signs; tularemia was suspected based on animal exposure, and F. tularensis grew in cerebrospinal fluid (CSF) culture. Both patients received combination antibiotic therapy and recovered from infection. Among 16 published cases, tularemia was clinically suspected in 4 cases. CSF often displayed lymphocytic pleocytosis. Among cases with available data, CSF culture was positive in 13 of 16 cases, and F. tularensis antibodies were detected in 11 of 11 cases. Treatment typically included an aminoglycoside combined with either a tetracycline or a fluoroquinolone. Outcomes were generally favorable. CONCLUSIONS: Clinicians should consider neuroinvasive F. tularensis infection in patients with meningitis and signs suggestive of tularemia or compatible exposures, lymphocyte-predominant CSF, unrevealing standard microbiologic workup, or lack of response to empiric bacterial meningitis treatment. Molecular testing, culture, and serologic testing can reveal the diagnosis. Favorable outcomes can be achieved with directed antibiotic treatment.


Assuntos
Francisella tularensis , Meningite , Tularemia , Animais , Humanos , Tularemia/diagnóstico , Tularemia/tratamento farmacológico , Tularemia/microbiologia , Antibacterianos/uso terapêutico , Aminoglicosídeos/uso terapêutico
2.
Emerg Infect Dis ; 29(10): 2177-2179, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735805

RESUMO

A 55-year-old man sought treatment for an uncomplicated febrile illness after returning to Canada from the Philippines. A suspected diagnosis of Plasmodium knowlesi infection was confirmed by PCR, and treatment with atovaquone/proguanil brought successful recovery. We review the evolving epidemiology of P. knowlesi malaria in the Philippines, specifically within Palawan Island.


Assuntos
Malária , Plasmodium knowlesi , Masculino , Humanos , Pessoa de Meia-Idade , Filipinas/epidemiologia , Plasmodium knowlesi/genética , Malária/diagnóstico , Malária/tratamento farmacológico , Malária/epidemiologia , Canadá/epidemiologia , Reação em Cadeia da Polimerase
3.
Curr Opin Infect Dis ; 36(4): 228-234, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37431553

RESUMO

PURPOSE OF REVIEW: Nucleic acid sequence-based organism identification plays an important role in the diagnosis and management of transplant and cancer-associated infectious diseases. Here, we provide a high-level overview of advanced sequencing technologies, discuss test performance, and highlight unmet research needs with a focus on immunocompromised hosts. RECENT FINDINGS: Next-generation sequencing (NGS) technologies are powerful tools with a growing role in managing immunocompromised patients with suspected infection. Targeted NGS (tNGS) can identify pathogens directly from patient specimens, especially for mixed samples, and has been used to detect resistance mutations in transplant-related viruses (e.g. CMV). Whole-genome sequencing (WGS) is increasingly used for outbreak investigations and infection control. Metagenomic NGS (mNGS) is useful for hypothesis-free testing and can simultaneously assess pathogens and host response to infection. SUMMARY: NGS testing increases diagnostic yield relative to standard culture and Sanger sequencing but may be limited by high cost, turnaround times, and detection of unexpected organisms or commensals of uncertain significance. Close collaboration with the clinical microbiology laboratory and infectious diseases is recommended when NGS testing is considered. Additional research is required to understand which immunocompromised patients are most likely to benefit from NGS testing, and when testing should ideally be performed.


Assuntos
Serviços de Laboratório Clínico , Doenças Transmissíveis , Viroses , Humanos , Medicina de Precisão , Viroses/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala
7.
Shock ; 58(3): 224-230, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36125356

RESUMO

ABSTRACT: Background: Risk stratification of emergency department patients with suspected acute infections and/or suspected sepsis remains challenging. We prospectively validated a 29-messenger RNA host response classifier for predicting severity in these patients. Methods: We enrolled adults presenting with suspected acute infections and at least one vital sign abnormality to six emergency departments in Greece. Twenty-nine target host RNAs were quantified on NanoString nCounter and analyzed with the Inflammatix Severity 2 (IMX-SEV-2) classifier to determine risk scores as low, moderate, and high severity. Performance of IMX-SEV-2 for prediction of 28-day mortality was compared with that of lactate, procalcitonin, and quick sequential organ failure assessment (qSOFA). Results: A total of 397 individuals were enrolled; 38 individuals (9.6%) died within 28 days. Inflammatix Severity 2 classifier predicted 28-day mortality with an area under the receiver operator characteristics curve of 0.82 (95% confidence interval [CI], 0.74-0.90) compared with lactate, 0.66 (95% CI, 0.54-0.77); procalcitonin, 0.67 (95% CI, 0.57-0.78); and qSOFA, 0.81 (95% CI, 0.72-0.89). Combining qSOFA with IMX-SEV-2 improved prognostic accuracy from 0.81 to 0.89 (95% CI, 0.82-0.96). The high-severity (rule-in) interpretation band of IMX-SEV-2 demonstrated 96.9% specificity for predicting 28-day mortality, whereas the low-severity (rule-out) band had a sensitivity of 78.9%. Similarly, IMX-SEV-2 alone accurately predicted the need for day-7 intensive care unit care and further boosted overall accuracy when combined with qSOFA. Conclusions: Inflammatix Severity 2 classifier predicted 28-day mortality and 7-day intensive care unit care with high accuracy and boosted the accuracy of clinical scores when used in combination.


Assuntos
Infecções , Sepse , Adulto , Serviço Hospitalar de Emergência , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva , Ácido Láctico , Escores de Disfunção Orgânica , Pró-Calcitonina , RNA Mensageiro , Sepse/diagnóstico , Sepse/genética
8.
J Clin Microbiol ; 60(6): e0218721, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35611653

RESUMO

Clostridioides difficile infection (CDI) is routinely diagnosed by PCR, with or without toxin enzyme immunoassay testing. The role of therapy for positive PCR and negative toxin remains unclear. The objective of this study was to determine whether clinical outcomes of PCR+/cycle threshold-based toxin (CT-toxin)- individuals vary by result reporting and treatment strategy. We performed a quasiexperimental noninferiority study comparing clinical outcomes of PCR+/CT-toxin- individuals by reporting PCR result only (most patients treated) with reporting CT-toxin result only (most patients untreated) in a single-center, tertiary academic hospital. The primary outcome was symptomatic PCR+/CT-toxin+ conversion at 8 weeks. Secondary outcomes included 7-day diarrhea resolution, hospital length of stay, and 30-day all-cause mortality. A total of 663 PCR+/CT-toxin- test results were analyzed from 632 individuals with a median age of 61 years (interquartile range [IQR], 44 to 72) and 50.4% immunocompromised. Individuals in the preintervention group were more likely to have received CDI therapy than those in the intervention group (91.5 versus 15.1%; P < 0.001). Symptomatic toxin conversion at 8 weeks and hospital length of stay failed to establish the predefined thresholds for noninferiority. Lack of diarrhea resolution at 7 days and 30-day all-cause mortality was similar and established noninferiority (20.0 versus 13.7%; adjusted odds ratio [aOR], 0.57; 90% confidence interval [CI], 0.32 to 1.01; P = 0.1; and 8.6 versus 6.5%; aOR, 0.46; 90% CI, 0.20 to 1.04; P = 0.12). These data support the safety of withholding antibiotics for selected hospitalized individuals with suspected CDI but negative toxin.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Adulto , Toxinas Bacterianas/análise , Toxinas Bacterianas/genética , Clostridioides difficile/genética , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/tratamento farmacológico , Diarreia/diagnóstico , Diarreia/tratamento farmacológico , Fezes/química , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos
12.
Anal Chim Acta ; 1200: 339435, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35256135

RESUMO

The high-efficiency separation and extraction of short fragments of cell-free DNA (cfDNA) remain challenging due to their low abundance and short lengths. This study presents a method for separating short cfDNA fragments, with lengths ranging from about 100 to 200 base pairs, from liquid human plasma samples into separable and extractable bands as solid agarose gel slabs. To achieve this, a novel millimeter-scale fluidic device is used for sample handling, transient isotachophoresis, and extraction. The device features open-to-atmosphere liquid chambers that define and manually actuated (i.e., movable) agarose-made gate valve structures. The agarose gates then define discrete zones for buffers, sample injection, DNA pre-concentration via isotachophoresis, size-based gel separation, and DNA-band extraction. As a demonstration of its efficacy, the device is applied to the enrichment and purification of M. tuberculosis genomic DNA fragments spiked in human plasma samples. This purified cfDNA is analyzed using the quantitative polymerase chain reaction (qPCR) of the IS6110 repetitive sequence in the M. tuberculosis genome. The data from this study demonstrates that high sensitivity can be achieved in cfDNA detection, as shown by the comparison with a typical solid-phase extraction method and buffer spiked with cfDNA. Evidence is presented that suggests plasma peptides generated by treatment of the sample with proteinase K acts as endogenous spacer molecules, which improve the resolution and purification of DNA relative to the marker dye and other contaminants that decrease the signal level in qPCR.


Assuntos
Ácidos Nucleicos Livres , DNA , Isotacoforese , Mycobacterium tuberculosis , Ácidos Nucleicos Livres/análise , DNA/análise , Humanos , Isotacoforese/métodos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética
13.
Front Microbiol ; 13: 1059289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37063449

RESUMO

Introduction: The routine clinical diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely restricted to real-time reverse transcription quantitative PCR (RT-qPCR), and tests that detect SARS-CoV-2 nucleocapsid antigen. Given the diagnostic delay and suboptimal sensitivity associated with these respective methods, alternative diagnostic strategies are needed for acute infection. Methods: We studied the use of a clinically validated liquid chromatography triple quadrupole method (LC/MS-MS) for detection of amino acids from plasma specimens. We applied machine learning models to distinguish between SARS-CoV-2-positive and negative samples and analyzed amino acid feature importance. Results: A total of 200 samples were tested, including 70 from individuals with COVID-19, and 130 from negative controls. The top performing model overall allowed discrimination between SARS-CoV-2-positive and negative control samples with an area under the receiver operating characteristic curve (AUC) of 0.96 (95%CI 0.91, 1.00), overall sensitivity of 0.99 (95%CI 0.92, 1.00), and specificity of 0.92 (95%CI 0.85, 0.95). Discussion: This approach holds potential as an alternative to existing methods for the rapid and accurate diagnosis of acute SARS-CoV-2 infection.

14.
J Clin Virol ; 145: 105020, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736075

RESUMO

BACKGROUND: Our institution utilizes an antigen/antibody screening test followed by a confirmatory antibody assay for preliminary positive results. Given the low prevalence for HIV infections in our institution's county, we suspect that a substantial portion of the reactive screens are false positives. OBJECTIVES: We aimed to characterize the false positivity rate of the HIV screening test performed at Stanford Health Care. In parallel, we modified our reporting workflow to release both the screening and confirmatory results simultaneously to mitigate the stress of a presumptive positive test. STUDY DESIGN: We reviewed 45,296 eligible HIV screen specimens that underwent the Abbott ARCHITECT™ 4th generation HIV antigen/antibody combination assay between August 5, 2016 and March 16, 2021. Final sample signal/cutoff (S/CO) ratios ≥ 1 were deemed positive, which triggers a reflex order for the confirmatory Bio-Rad Geenius™ HIV 1/2 Supplemental Assay. Additional chart review was performed for positive screen cases with negative or indeterminate confirmatory results. RESULTS: Our institution demonstrated a 0.28% (128/45,296) positive screen rate, with 12.5% (16/128) of these samples confirmed as false positives based on a negative HIV-1 RNA test. Median S/CO ratios of true positive screens were significantly higher than those with negative or indeterminate confirmatory tests (602.27vs 2.98; p = 0.0000323). We implemented a new synchronized reporting system for positive screens, which co-releases screen and confirmatory reports without compromise in the overall turnaround time. CONCLUSIONS: Our study demonstrates a relatively high percentage of false positive screens. Subsequently, by providing a more complete picture up front, our new reporting pipeline may reduce anxiety of a stand-alone positive screen and optimize downstream clinical decision-making.


Assuntos
Infecções por HIV , HIV-1 , Algoritmos , Anticorpos Anti-HIV , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , HIV-2 , Humanos , Programas de Rastreamento , Prevalência , Sensibilidade e Especificidade , Fluxo de Trabalho
15.
J Clin Virol ; 144: 104996, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34628158

RESUMO

BACKGROUND: High-throughput assays for the detection of SARS-CoV-2 variants of concern (VOC) and interest (VOI) are a diagnostic alternative when whole genome sequencing (WGS) is unavailable or limited. OBJECTIVE: This study evaluated the clinical and analytical performance of the Seegene Allplex™ SARS-CoV-2 Variants I assay, which detects the HV69/70 deletion, N501Y and E484K mutations of the S gene. METHODS: Genotyping was evaluated on -871 SARS-CoV-2 RNA positive specimens, 408 nasopharyngeal (NP) swabs and 463 saline gargle (SG) specimens, with WGS used as the reference standard. Analytical performance was assessed including stability, reproducibility, limit of detection (LOD), cross-reactivity and interference with various respiratory microorganisms. RESULTS: The clinical study revealed sensitivity of 100% (95% CI 99.27%-100%) and specificity of 100% (95% CI 98.99%-100%) for HV69/70 deletion, sensitivity of 100% (95% CI 99.55%-100%) and specificity of 100% (95% CI 93.73% - 100%) for N501Y, and sensitivity of 100% (95% CI 98.94% - 100%) and specificity of 98.10% (95% CI 96.53% - 99.08%) for E484K mutation. The E484Q mutation was detected in 10 specimens of the Kappa variant (B.1.627.1). Analytical performance demonstrated stability and reproducibility over 7 days, and LOD was calculated at 698 cp/mL for NP swab specimens, and 968 cp/mL for SG specimens. No interference or cross-reactivity with other microorganisms was noted. CONCLUSION: The Allplex™ SARS-CoV-2 Variants I assay is acceptable for clinical use for the detection of variant of concern and variant of interest.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Reprodutibilidade dos Testes
16.
Clin Chem ; 68(1): 204-213, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34605900

RESUMO

BACKGROUND: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid antigen in blood has been described, but the diagnostic and prognostic role of antigenemia is not well understood. This study aimed to determine the frequency, duration, and concentration of nucleocapsid antigen in plasma and its association with coronavirus disease 2019 (COVID-19) severity. METHODS: We utilized an ultrasensitive electrochemiluminescence immunoassay targeting SARS-CoV-2 nucleocapsid antigen to evaluate 777 plasma samples from 104 individuals with COVID-19. We compared plasma antigen to respiratory nucleic acid amplification testing (NAAT) in 74 individuals with COVID-19 from samples collected ±1 day of diagnostic respiratory NAAT and in 52 SARS-CoV-2-negative individuals. We used Kruskal-Wallis tests, multivariable logistic regression, and mixed-effects modeling to evaluate whether plasma antigen concentration was associated with disease severity. RESULTS: Plasma antigen had 91.9% (95% CI 83.2%-97.0%) clinical sensitivity and 94.2% (84.1%-98.8%) clinical specificity. Antigen-negative plasma samples belonged to patients with later respiratory cycle thresholds (Ct) when compared with antigen-positive plasma samples. Median plasma antigen concentration (log10 fg/mL) was 5.4 (interquartile range 3.9-6.0) in outpatients, 6.0 (5.4-6.5) in inpatients, and 6.6 (6.1-7.2) in intensive care unit (ICU) patients. In models adjusted for age, sex, diabetes, and hypertension, plasma antigen concentration at diagnosis was associated with ICU admission [odds ratio 2.8 (95% CI 1.2-6.2), P=.01] but not with non-ICU hospitalization. Rate of antigen decrease was not associated with disease severity. CONCLUSIONS: SARS-CoV-2 plasma nucleocapsid antigen exhibited comparable diagnostic performance to upper respiratory NAAT, especially among those with late respiratory Ct. In addition to currently available tools, antigenemia may facilitate patient triage to optimize intensive care utilization.


Assuntos
Antígenos Virais/sangue , Teste para COVID-19/métodos , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/sangue , COVID-19/diagnóstico , Técnicas Eletroquímicas , Hospitalização , Humanos , Imunoensaio , Medições Luminescentes , Nucleocapsídeo , Fosfoproteínas/sangue , SARS-CoV-2 , Sensibilidade e Especificidade
17.
EBioMedicine ; 71: 103546, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34419924

RESUMO

BACKGROUND: Respiratory virus infections are significant causes of morbidity and mortality, and may induce host metabolite alterations by infecting respiratory epithelial cells. We investigated the use of liquid chromatography quadrupole time-of-flight mass spectrometry (LC/Q-TOF) combined with machine learning for the diagnosis of influenza infection. METHODS: We analyzed nasopharyngeal swab samples by LC/Q-TOF to identify distinct metabolic signatures for diagnosis of acute illness. Machine learning models were performed for classification, followed by Shapley additive explanation (SHAP) analysis to analyze feature importance and for biomarker discovery. FINDINGS: A total of 236 samples were tested in the discovery phase by LC/Q-TOF, including 118 positive samples (40 influenza A 2009 H1N1, 39 influenza H3 and 39 influenza B) as well as 118 age and sex-matched negative controls with acute respiratory illness. Analysis showed an area under the receiver operating characteristic curve (AUC) of 1.00 (95% confidence interval [95% CI] 0.99, 1.00), sensitivity of 1.00 (95% CI 0.86, 1.00) and specificity of 0.96 (95% CI 0.81, 0.99). The metabolite most strongly associated with differential classification was pyroglutamic acid. Independent validation of a biomarker signature based on the top 20 differentiating ion features was performed in a prospective cohort of 96 symptomatic individuals including 48 positive samples (24 influenza A 2009 H1N1, 5 influenza H3 and 19 influenza B) and 48 negative samples. Testing performed using a clinically-applicable targeted approach, liquid chromatography triple quadrupole mass spectrometry, showed an AUC of 1.00 (95% CI 0.998, 1.00), sensitivity of 0.94 (95% CI 0.83, 0.98), and specificity of 1.00 (95% CI 0.93, 1.00). Limitations include lack of sample suitability assessment, and need to validate these findings in additional patient populations. INTERPRETATION: This metabolomic approach has potential for diagnostic applications in infectious diseases testing, including other respiratory viruses, and may eventually be adapted for point-of-care testing. FUNDING: None.


Assuntos
Influenza Humana/diagnóstico , Aprendizado de Máquina , Metaboloma , Técnicas de Diagnóstico Molecular/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Influenza Humana/metabolismo , Influenza Humana/virologia , Masculino , Metabolômica/métodos , Mucosa Nasal/metabolismo , Mucosa Nasal/virologia , Orthomyxoviridae/patogenicidade , Ácido Pirrolidonocarboxílico/análise
18.
Emerg Infect Dis ; 27(11): 2802-2809, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34388358

RESUMO

Several severe acute respiratory syndrome coronavirus 2 variants of concern (VOCs) emerged in late 2020; lineage B.1.1.7 initially dominated globally. However, lineages B.1.351 and P.1 represent potentially greater risk for transmission and immune escape. In British Columbia, Canada, B.1.1.7 and B.1.351 were first identified in December 2020 and P.1 in February 2021. We combined quantitative PCR and whole-genome sequencing to assess relative contribution of VOCs in nearly 67,000 infections during the first 16 weeks of 2021 in British Columbia. B.1.1.7 accounted for <10% of screened or sequenced specimens early on, increasing to >50% by week 8. P.1 accounted for <10% until week 10, increased rapidly to peak at week 12, and by week 13 codominated within 10% of rates of B.1.1.7. B.1.351 was a minority throughout. This rapid expansion of P.1 but suppression of B.1.351 expands our understanding of population-level VOC patterns and might provide clues to fitness determinants for emerging VOCs.


Assuntos
COVID-19 , SARS-CoV-2 , Colúmbia Britânica/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real
19.
Sci Rep ; 11(1): 11360, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059754

RESUMO

A key predictor of morbidity and mortality for patients with a bloodstream infection is time to appropriate antimicrobial therapy. Accelerating antimicrobial susceptibility testing from positive blood cultures is therefore key to improving patient outcomes, yet traditional laboratory approaches can require 2-4 days for actionable results. The eQUANT-a novel instrument utilizing electrical biosensors-produces a standardized inoculum equivalent to a 0.5 McFarland directly from positive blood cultures. This proof-of-concept study demonstrates that eQUANT inocula prepared from clinically significant species of Enterobacterales were comparable to 0.5 McF inocula generated from bacterial colonies in both CFU/ml concentration and performance in antimicrobial susceptibility testing, with ≥ 95% essential and categorical agreement for VITEK2 and disk diffusion. The eQUANT, combined with a rapid, direct from positive blood culture identification technique, can allow the clinical laboratory to begin antimicrobial susceptibility testing using a standardized inoculum approximately 2-3 h after a blood culture flags positive. This has the potential to improve clinical practice by accelerating conventional antimicrobial susceptibility testing and the resulting targeted antibiotic therapy.


Assuntos
Eletrônica , Testes de Sensibilidade Microbiana/métodos , Algoritmos , Automação , Técnicas Biossensoriais , Contagem de Colônia Microbiana , Estudos de Avaliação como Assunto , Estudos de Viabilidade , Testes de Sensibilidade Microbiana/normas , Estudo de Prova de Conceito
20.
Clin Infect Dis ; 73(12): 2326-2328, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33830203

RESUMO

An ultra-sensitive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid antigen assay (S-PLEX, MesoScale Diagnostics) was evaluated in 250 retrospective and 200 prospective upper respiratory specimens. In samples with cycle threshold <35, there was 95%-98% positive and 93%-96% negative percent agreement with reverse transcription-polymerase chain reaction. S-PLEX may provide a high-throughput alternative to nucleic acid-based testing for coronavirus disease 2019 (COVID-19) diagnosis.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Testes Imunológicos , Estudos Prospectivos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...